首页> 外文OA文献 >Adhesion Between Volcanic Glass and Spacecraft Materials in an Airless Body Environment
【2h】

Adhesion Between Volcanic Glass and Spacecraft Materials in an Airless Body Environment

机译:在无空气的人体环境中火山玻璃与航天器材料之间的粘附力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The successful exploration of airless bodies, such as the Earth s moon, many smaller moons of the outer planets (including those of Mars) and asteroids, will depend on the development and implementation of effective dust mitigation strategies. The ultrahigh vacuum environment (UHV) on the surfaces of these bodies, coupled with constant ion and photon bombardment from the Sun and micrometeorite impacts (space weathering), makes dust adhesion to critical spacecraft systems a severe problem. As a result, the performance of thermal control surfaces, photovoltaics and mechanical systems can be seriously degraded even to the point of failure. The severe dust adhesion experienced in these environments is thought to be primarily due to two physical mechanisms, electrostatic attraction and high surface energies, but the dominant of these has yet to be determined. The experiments presented here aim to address which of these two mechanisms is dominant by quantifying the adhesion between common spacecraft materials (polycarbonate, FEP and PTFE Teflon, (DuPont) Ti-6-4) and a synthetic noritic volcanic glass, as a function of surface cleanliness and triboelectric charge transfer in a UHV environment. Adhesion force has been measured between pins of spacecraft materials and a plate of synthetic volcanic glass by determining the pull-off force with a torsion balance. Although no significant adhesion is observed directly as a result of high surface energies, the adhesion due to induced electrostatic charge is observed to increase with spacecraft material cleanliness, in some cases by over a factor of 10, although the increase is dependent on the particular material pair. The knowledge gained by these studies is envisioned to aid the development of new dust mitigation strategies and improve existing strategies by helping to identify and characterize mechanisms of glass to spacecraft adhesion for norite volcanic glass particles. Furthermore, the experience of the Apollo missions revealed that dust mitigation strategies must be subjected to high fidelity tests. To facilitate the effectiveness of ground-based testing of mitigation strategies, the issue of a pressure limit for high fidelity tests will be addressed.
机译:对无空气物体的成功探索,例如地球的月球,外行星的许多较小的卫星(包括火星的月球)和小行星,将取决于有效的减尘策略的制定和实施。这些物体表面的超高真空环境(UHV),再加上来自太阳的不断离子和光子轰击以及微陨石撞击(太空风化),使得尘埃附着在关键的航天器系统上成为一个严重的问题。结果,热控制表面,光伏和机械系统的性能可能严重下降,甚至达到故障点。人们认为,在这些环境中发生的严重粉尘粘附主要是由于两个物理机制引起的,即静电吸引和高表面能,但这些因素中的主要因素尚未确定。本文介绍的实验旨在通过量化常见航天器材料(聚碳酸酯,FEP和PTFE铁氟龙,(杜邦公司)Ti-6-4)与合成诺氏火山玻璃之间的粘附力来解决这两种机理中的哪一种是主要的超高压环境中的表面清洁度和摩擦电荷转移。通过确定带有扭力平衡的拉力,可以测量航天器材料的销钉与人造火山玻璃板之间的粘附力。尽管没有观察到由于高表面能直接引起的显着粘附,但观察到由于感应静电荷引起的粘附随着航天器材料清洁度的增加而增加,在某些情况下增加了十倍以上,尽管这种增加取决于特定的材料对。从这些研究中获得的知识可以用来帮助开发新的减尘策略,并通过帮助识别和表征玻璃与航天器对诺奇火山玻璃颗粒的粘附机制来改善现有策略。此外,阿波罗飞行任务的经验表明,减尘策略必须经过高保真度测试。为了提高基于地面的缓解策略测试的有效性,将解决高保真度测试的压力限制问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号